opendataval package#
Subpackages#
Submodules#
opendataval.metrics module#
- class opendataval.metrics.Metrics(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
- Bases: - FuncEnum- ACCURACY = accuracy#
 - NEG_L2 = neg_l2#
 - NEG_MSE = neg_mse#
 
- opendataval.metrics.accuracy(a: Tensor, b: Tensor) float#
- Compute accuracy of two one-hot encoding tensors. 
- opendataval.metrics.neg_l2(a: Tensor, b: Tensor) float#
- opendataval.metrics.neg_mse(a: Tensor, b: Tensor)#
opendataval.util module#
- class opendataval.util.FuncEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
- Bases: - StrEnum- Creating a Enum of functions identifiable by a string. 
- class opendataval.util.MeanStdTime(input_data: list[float], elapsed_time: float = 0.0)#
- Bases: - object- Formats Mean and standard time. 
- class opendataval.util.ParamSweep(pred_model, evaluator, fetcher, samples: int = 10)#
- Bases: - object- sweep(**kwargs_list) dict[str, MeanStdTime]#
 
- class opendataval.util.ReprMixin(*args, **kwargs)#
- Bases: - object- Gives unique repr of object based on class name and arguments 
- class opendataval.util.StrEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
- Bases: - str,- Enum- StrEnum is not implemented in Python3.9. 
- opendataval.util.batched(it, n=1)#
- opendataval.util.get_name(func: Callable) str#
- Gets name from function. 
- opendataval.util.load_mediator_output(filepath: str)#
- Loads output of Pandas DataFrame csv generated by ExperimentMediator. 
- opendataval.util.set_random_state(random_state: RandomState | None = None) RandomState#
- Set the random state of opendataval, useful for recreation of results. 
- class opendataval.util.wrapper(function: Callable[[X, ...], Y], name: str | None = None)#
- Bases: - str,- Generic[- X,- Y]
Module contents#
Framework with data sets, experiments, and evaluators to quantify the worth of data.
opendataval#
opendataval provides a framework to evaluate the worth of data. The framework
is easily extendable via adding/registering new datasets via
DataFetcher +
Register, creating your own
DataEvaluator via inheritance, or creating new
experiments to be run by ExperimentMediator.
The framework provides a robust and replicable way of loading data, selecting a model,
training (several) data evaluators, and running an experiment to determine performance
on all of them.
Modules#
| Create data sets and loads with  | |
| Create  | |
| Prediction models to be trained, predict, and evaluated. | |
| Run experiments on  | 
Utils#
| 
 | Set the random state of opendataval, useful for recreation of results. | 
| 
 | Loads output of Pandas DataFrame csv generated by ExperimentMediator. | 
| Version release number. |