opendataval.dataval.ShapEvaluator#
- class opendataval.dataval.ShapEvaluator(*args, **kwargs)#
Abstract class for all semivalue-based methods of computing data values.
References#
Attributes#
- samplerSampler, optional
Sampler used to compute the marginal contribution, by default uses TMC-Shapley with a Gelman-Rubin statistic terminator. Samplers are found in
sampler
Parameters#
- samplerSampler, optional
Sampler used to compute the marginal contributions. Can be found in opendataval/margcontrib/sampler.py, by default GrTMCSampler and uses additonal arguments as constructor for sampler.
- gr_thresholdfloat, optional
Convergence threshold for the Gelman-Rubin statistic. Shapley values are NP-hard so we resort to MCMC sampling, by default 1.05
- max_mc_epochsint, optional
Max number of outer epochs of MCMC sampling, by default 100
- models_per_epochint, optional
Number of model fittings to take per epoch prior to checking GR convergence, by default 100
- min_modelsint, optional
Minimum samples before checking MCMC convergence, by default 1000
- min_cardinalityint, optional
Minimum cardinality of a training set, must be passed as kwarg, by default 5
- cache_namestr, optional
Unique cache_name of the model to cache marginal contributions, set to None to disable caching, by default “” which is set to a unique value for a object
- random_stateRandomState, optional
Random initial state, by default None
Methods
__init__
([sampler])compute_weight
()Compute the weights for each cardinality of training set.
evaluate
(y, y_hat)Evaluate performance of the specified metric between label and predictions.
evaluate_data_values
()Return data values for each training data point.
input_data
(x_train, y_train, x_valid, y_valid)Store and transform input data for semi-value samplers.
input_fetcher
(fetcher)Input data from a DataFetcher object.
input_metric
(metric)Input the evaluation metric.
input_model
(pred_model)Input the prediction model.
input_model_metric
(pred_model, metric)Input the prediction model and the evaluation metric.
setup
(fetcher[, pred_model, metric])Inputs model, metric and data into Data Evaluator.
train
(fetcher[, pred_model, metric])Store and transform data, then train model to predict data values.
train_data_values
(*args, **kwargs)Uses sampler to trains model to find marginal contribs and data values.
Attributes
Evaluators
data_values
Cached data values.