opendataval.dataval.DataEvaluator#
- class opendataval.dataval.DataEvaluator(*args, **kwargs)#
Abstract class of Data Evaluators. Facilitates Data Evaluation computation.
The following is an example of how the api would work:
dataval = ( DataEvaluator(*args, **kwargs) .input_data(x_train, y_train, x_valid, y_valid) .train_data_values(batch_size, epochs) .evaluate_data_values() )
Parameters#
- random_stateRandomState, optional
Random initial state, by default None
- argstuple[Any]
DavaEvaluator positional arguments
- kwargsDict[str, Any]
DavaEvaluator key word arguments
Attributes#
- pred_modelModel
Prediction model to find how much each training datum contributes towards it.
- data_values: np.array
Cached data values, used by
opendataval.experiment.exper_methods
- __init__(random_state: RandomState | None = None, *args, **kwargs)#
Methods
__init__([random_state])evaluate_data_values()Return data values for each training data point.
input_data(x_train, y_train, x_valid, y_valid)Store and transform input data for DataEvaluator.
input_fetcher(fetcher)Input data from a DataFetcher object.
setup(fetcher[, pred_model, metric])Inputs model, metric and data into Data Evaluator.
train(fetcher[, pred_model, metric])Store and transform data, then train model to predict data values.
train_data_values(*args, **kwargs)Trains model to predict data values.
Attributes
Evaluatorsdata_valuesCached data values.