opendataval.model.TorchRegressMixin#
- class opendataval.model.TorchRegressMixin(*args, **kwargs)#
- Regressor Mixin for Torch Neural Networks. - __init__(*args, **kwargs) None#
- Initializes internal Module state, shared by both nn.Module and ScriptModule. 
 - Methods - __init__(*args, **kwargs)- Initializes internal Module state, shared by both nn.Module and ScriptModule. - add_module(name, module)- Adds a child module to the current module. - apply(fn)- Applies - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16()- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers([recurse])- Returns an iterator over module buffers. - children()- Returns an iterator over immediate children modules. - clone()- Clone Model object. - compile(*args, **kwargs)- Compile this Module's forward using - torch.compile().- cpu()- Moves all model parameters and buffers to the CPU. - cuda([device])- Moves all model parameters and buffers to the GPU. - double()- Casts all floating point parameters and buffers to - doubledatatype.- eval()- Sets the module in evaluation mode. - extra_repr()- Set the extra representation of the module - fit(x_train, y_train[, sample_weight, ...])- Fits the regression model on the training data. - float()- Casts all floating point parameters and buffers to - floatdatatype.- forward(*input)- Defines the computation performed at every call. - get_buffer(target)- Returns the buffer given by - targetif it exists, otherwise throws an error.- get_extra_state()- Returns any extra state to include in the module's state_dict. - get_parameter(target)- Returns the parameter given by - targetif it exists, otherwise throws an error.- get_submodule(target)- Returns the submodule given by - targetif it exists, otherwise throws an error.- half()- Casts all floating point parameters and buffers to - halfdatatype.- ipu([device])- Moves all model parameters and buffers to the IPU. - load_state_dict(state_dict[, strict, assign])- Copies parameters and buffers from - state_dictinto this module and its descendants.- modules()- Returns an iterator over all modules in the network. - named_buffers([prefix, recurse, ...])- Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children()- Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules([memo, prefix, remove_duplicate])- Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters([prefix, recurse, ...])- Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters([recurse])- Returns an iterator over module parameters. - predict(x, *args, **kwargs)- Predict the label from the input covariates data. - register_backward_hook(hook)- Registers a backward hook on the module. - register_buffer(name, tensor[, persistent])- Adds a buffer to the module. - register_forward_hook(hook, *[, prepend, ...])- Registers a forward hook on the module. - register_forward_pre_hook(hook, *[, ...])- Registers a forward pre-hook on the module. - register_full_backward_hook(hook[, prepend])- Registers a backward hook on the module. - register_full_backward_pre_hook(hook[, prepend])- Registers a backward pre-hook on the module. - register_load_state_dict_post_hook(hook)- Registers a post hook to be run after module's - load_state_dictis called.- register_module(name, module)- Alias for - add_module().- register_parameter(name, param)- Adds a parameter to the module. - register_state_dict_pre_hook(hook)- These hooks will be called with arguments: - self,- prefix, and- keep_varsbefore calling- state_dicton- self.- requires_grad_([requires_grad])- Change if autograd should record operations on parameters in this module. - set_extra_state(state)- This function is called from - load_state_dict()to handle any extra state found within the state_dict.- share_memory()- See - torch.Tensor.share_memory_()- state_dict(*args[, destination, prefix, ...])- Returns a dictionary containing references to the whole state of the module. - to(*args, **kwargs)- Moves and/or casts the parameters and buffers. - to_empty(*, device[, recurse])- Moves the parameters and buffers to the specified device without copying storage. - train([mode])- Sets the module in training mode. - type(dst_type)- Casts all parameters and buffers to - dst_type.- xpu([device])- Moves all model parameters and buffers to the XPU. - zero_grad([set_to_none])- Resets gradients of all model parameters. - Attributes - Models- T_destination- call_super_init- device- dump_patches- training