opendataval.dataval.InfluenceFunction#
- class opendataval.dataval.InfluenceFunction(*args, **kwargs)#
Influence Function Data evaluation implementation.
TODO it may be useful to compute gradients of the validation dataset in batches to save time/space. TODO H^{-1} implementation, Current implementation is for first-order gradients
References#
Parameters#
- grad_argstuple, optional
Positional arguments passed to the model.grad function
- grad_kwargsdict[str, Any], optional
Key word arguments passed to the model.grad function
- __init__(*grad_args, **grad_kwargs)#
Methods
__init__
(*grad_args, **grad_kwargs)evaluate
(y, y_hat)Evaluate performance of the specified metric between label and predictions.
evaluate_data_values
()Return influence (data values) for each training data point.
input_data
(x_train, y_train, x_valid, y_valid)Store and transform input data for Influence Function Data Valuation.
input_fetcher
(fetcher)Input data from a DataFetcher object.
input_metric
(metric)Input the evaluation metric.
input_model
(pred_model)Input the prediction model with gradient.
input_model_metric
(pred_model, metric)Input the prediction model and the evaluation metric.
setup
(fetcher[, pred_model, metric])Inputs model, metric and data into Data Evaluator.
train
(fetcher[, pred_model, metric])Store and transform data, then train model to predict data values.
train_data_values
(*args, **kwargs)Trains model to compute influence of each data point (data values).
Attributes
Evaluators
data_values
Cached data values.