opendataval.dataval.AME#
- class opendataval.dataval.AME(*args, **kwargs)#
Implementation of Average Marginal Effect Data Valuation.
References#
Parameters#
- num_modelsint, optional
Number of models to bag/aggregate, by default 1000
- random_stateRandomState, optional
Random initial state, by default None
- __init__(num_models: int = 1000, random_state: RandomState | None = None)#
Methods
__init__([num_models, random_state])evaluate(y, y_hat)Evaluate performance of the specified metric between label and predictions.
evaluate_data_values()Return data values for each training data point.
input_data(x_train, y_train, x_valid, y_valid)Store and transform input data for DataEvaluator.
input_fetcher(fetcher)Input data from a DataFetcher object.
input_metric(metric)Input the evaluation metric.
input_model(pred_model)Input the prediction model.
input_model_metric(pred_model, metric)Input the prediction model and the evaluation metric.
setup(fetcher[, pred_model, metric])Inputs model, metric and data into Data Evaluator.
train(fetcher[, pred_model, metric])Store and transform data, then train model to predict data values.
train_data_values(*args, **kwargs)Trains model to predict data values.
Attributes
Evaluatorsdata_valuesCached data values.