opendataval.dataval.csshap package#
Submodules#
opendataval.dataval.csshap.csshap module#
- class opendataval.dataval.csshap.csshap.ClassWiseShapley(*args, **kwargs)#
Bases:
DataEvaluator
,ModelMixin
Class-wise shapley data valuation implementation
NOTE only categorical labels is a valid input to Class-Wise Shapley.
References#
Parameters#
- samplerSampler, optional
Sampler used to compute the marginal contributions. NOTE the sampler may not use a cache and cache_name should explicitly be passes None. Can be found in
sampler
, by default uses *args, **kwargs forTMCSampler
but removes cache.
- evaluate_data_values() ndarray #
Returns data values for CS-Shapley
- input_data(x_train: Tensor, y_train: Tensor, x_valid: Tensor, y_valid: Tensor)#
Store and transform input data for CS-Shapley.
Parameters#
- x_traintorch.Tensor
Data covariates
- y_traintorch.Tensor
Data labels
- x_validtorch.Tensor
Test+Held-out covariates
- y_validtorch.Tensor
Test+Held-out labels
- train_data_values(*args, **kwargs)#
Uses sampler to trains model to find marginal contribs and data values.
For each class, we separate the training and validation data into in-class and out-class. Then we will compute the class-wise shapley values using the sampler. Finally, we record the shapley value in self.data_values.