opendataval.dataval.LavaEvaluator#

class opendataval.dataval.LavaEvaluator(*args, **kwargs)#

Data valuation using LAVA implementation.

References#

Parameters#

devicetorch.device, optional

Tensor device for acceleration, by default torch.device(“cpu”)

random_state: RandomState, optional

Random initial state, by default None

Mixins#

ModelLessMixin

Mixin for a data evaluator that doesn’t require a model or evaluation metric.

__init__(device: device = device(type='cpu'), embedding_model: Model | None = None, random_state: RandomState | None = None)#

Methods

__init__([device, embedding_model, random_state])

embeddings(*tensors)

Returns Embeddings for the input tensors

evaluate_data_values()

Return data values for each training data point.

input_data(x_train, y_train, x_valid, y_valid)

Store and transform input data for DataEvaluator.

input_fetcher(fetcher)

Input data from a DataFetcher object.

setup(fetcher[, pred_model, metric])

Inputs model, metric and data into Data Evaluator.

train(fetcher[, pred_model, metric])

Store and transform data, then train model to predict data values.

train_data_values(*args, **kwargs)

Trains model to predict data values.

Attributes

Evaluators

data_values

Cached data values.