opendataval.dataval.LavaEvaluator#
- class opendataval.dataval.LavaEvaluator(*args, **kwargs)#
Data valuation using LAVA implementation.
References#
Parameters#
- devicetorch.device, optional
Tensor device for acceleration, by default torch.device(“cpu”)
- random_state: RandomState, optional
Random initial state, by default None
Mixins#
- ModelLessMixin
Mixin for a data evaluator that doesn’t require a model or evaluation metric.
- __init__(device: device = device(type='cpu'), embedding_model: Model | None = None, random_state: RandomState | None = None)#
Methods
__init__
([device, embedding_model, random_state])embeddings
(*tensors)Returns Embeddings for the input tensors
evaluate_data_values
()Return data values for each training data point.
input_data
(x_train, y_train, x_valid, y_valid)Store and transform input data for DataEvaluator.
input_fetcher
(fetcher)Input data from a DataFetcher object.
setup
(fetcher[, pred_model, metric])Inputs model, metric and data into Data Evaluator.
train
(fetcher[, pred_model, metric])Store and transform data, then train model to predict data values.
train_data_values
(*args, **kwargs)Trains model to predict data values.
Attributes
Evaluators
data_values
Cached data values.