opendataval package#
Subpackages#
Submodules#
opendataval.metrics module#
- class opendataval.metrics.Metrics(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
Bases:
FuncEnum
- ACCURACY = accuracy#
- NEG_L2 = neg_l2#
- NEG_MSE = neg_mse#
- opendataval.metrics.accuracy(a: Tensor, b: Tensor) float #
Compute accuracy of two one-hot encoding tensors.
- opendataval.metrics.neg_l2(a: Tensor, b: Tensor) float #
- opendataval.metrics.neg_mse(a: Tensor, b: Tensor)#
opendataval.util module#
- class opendataval.util.FuncEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
Bases:
StrEnum
Creating a Enum of functions identifiable by a string.
- class opendataval.util.MeanStdTime(input_data: list[float], elapsed_time: float = 0.0)#
Bases:
object
Formats Mean and standard time.
- class opendataval.util.ParamSweep(pred_model, evaluator, fetcher, samples: int = 10)#
Bases:
object
- sweep(**kwargs_list) dict[str, MeanStdTime] #
- class opendataval.util.ReprMixin(*args, **kwargs)#
Bases:
object
Gives unique repr of object based on class name and arguments
- class opendataval.util.StrEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
Bases:
str
,Enum
StrEnum is not implemented in Python3.9.
- opendataval.util.batched(it, n=1)#
- opendataval.util.get_name(func: Callable) str #
Gets name from function.
- opendataval.util.load_mediator_output(filepath: str)#
Loads output of Pandas DataFrame csv generated by ExperimentMediator.
- opendataval.util.set_random_state(random_state: RandomState | None = None) RandomState #
Set the random state of opendataval, useful for recreation of results.
- class opendataval.util.wrapper(function: Callable[[X, ...], Y], name: str | None = None)#
Bases:
str
,Generic
[X
,Y
]
Module contents#
Framework with data sets, experiments, and evaluators to quantify the worth of data.
opendataval#
opendataval
provides a framework to evaluate the worth of data. The framework
is easily extendable via adding/registering new datasets via
DataFetcher
+
Register
, creating your own
DataEvaluator
via inheritance, or creating new
experiments to be run by ExperimentMediator
.
The framework provides a robust and replicable way of loading data, selecting a model,
training (several) data evaluators, and running an experiment to determine performance
on all of them.
Modules#
Create data sets and loads with |
|
Create |
|
Prediction models to be trained, predict, and evaluated. |
|
Run experiments on |
Utils#
|
Set the random state of opendataval, useful for recreation of results. |
|
Loads output of Pandas DataFrame csv generated by ExperimentMediator. |
Version release number. |